ANIMATION WORLD MAGAZINE - ISSUE 4.10 - JANUARY 2000

Fantasia/2000: Blending Art and Technology
(Continued from page 2)

We designed the key frames keeping in mind that this method needed to blend with the traditional animation. Once the key drawings were approved, they were then passed on to the traditional background department.

After receiving final approval of the paintings, from our director and the art director, this artwork was then scanned hi-res into our CAPS system. Then the images were transferred over to our 3D system and scene set-up was completed by one of our TDs. Morphtool, which is a proprietary morphing software package developed in-house at Walt Disney Feature Animation, was used to create the "animation" of the paintings. The main advantage to using this software is better animation timing controls and a very useful x-sheet editor.

The final animation was then transferred back into CAPS with the images bound to the scene's digital x-sheet. The morphed ocean surface, along with a 3D arc, live-action rain, a traditional background, hand-drawn blowing spray and some lightning were then composited together to create the final shot.

The beautiful "Firebird" sprite from Fantasia/2000. © Disney Enterprises Inc.

The Grand Finale
Several methods were used to create seamless 2D/3D effects for "The Firebird." Most of the effects were created using primarily the Houdini software package. Other 2D paint packages including Photoshop, and Disney's proprietary drawtool and morphtool, played a supportive role.

The 2D/3D mixture that created the sprite character was accomplished by bringing scans of the 2D drawings of the sprite animation into the computer, and then adding the particle effects of streaming grass, pollen, flowers and magical dust. A 3D simplified version of the sprite was built and hand-tracked frame by frame to match the 2D animation. Particles were emitted along a flat plane in one direction. Forces were added, and once the desired behavior was achieved, a process called "creeping" was used to conform the particle simulation to the shape of the 3D sprite, which gives the impression of particles flowing down the contours of the sprite's body. The 3D sprite was hidden before rendering so the particles could be composited with the 2D sprite and create the final effect.

Every shot with particles contained tens of thousands of particles. The final shot of the piece, in which the sprite dissipates, contains over 1 million particles.

Several scenes contained growing plant life from particles being dropped from the sprite. To achieve this effect, particles being thrown from the sprite were programmed to detect when they landed on the ground, which was a 3D grid modeled in the computer to match the background paintings. Once one of the particles connected with the ground, its program caused it to stop moving and trigger a short "animation event" of a growing plant in the exact spot the particle landed. Every particle would randomly select from several animation events of different plants at different growth speeds and colors which gave the impression of thousands of different plants coming back to life over the landscape. These animation events were traditionally animated and then painted by our background department.

Finally, one of the great things about working on the Fantasia/2000 project was that we had the ability and resources to use existing and custom software with traditional animation techniques in new ways. One of our goals was to blur the lines between digitally and traditionally created animation. When colleagues have trouble distinguishing between the two techniques then I think we have successfully blended art with technology!

I would like to thank my colleagues Uma Thumrugoti and Michael Kaschalk for their input and comments on this article.

David Bossert was artistic coordinator and visual effects supervisor on
Fantasia/2000.

1 | 2 | 3
 


Note: Readers may contact any Animation World Magazine contributor by sending an e-mail to editor@awn.com.